By Topic

GMTI clutter cancellation using real non-ideal data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Banahan, C.P. ; Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK ; Perks, D. ; Baker, C. ; Woodbridge, K.

The performance of displaced phase centre antenna (DPCA), adaptive DPCA (ADPCA) and joint domain localised space time adaptive processing (JDL-STAP) was examined when applied to data that were not gathered for ground moving target indication (GMTI) purposes, and using very few array elements. Three different methods to be applied at the pre-processing stage to match pulses from different spatial channels were compared. The ADPCA method was shown to be the most robust in the presence of signals leaked from other range cells while traditional DPCA proved to be the most effective at attenuating stationary targets in non-ideal conditions, providing that pre-processing, using a pulse shift and a ramp in phase, was applied to the data. Quantitative results are presented, which are drawn from real experiments using real airborne radar data and which provide a valuable insight into the tolerance of DPCA, ADPCA and STAP when put to use with few spatial channels on non-ideal data. The study shows that all three GMTI algorithms used with few antenna elements can successfully resolve moving targets from clutter in such data and discusses the limitations of each in suppressing unwanted stationary peaks.

Published in:

Radar, Sonar & Navigation, IET  (Volume:4 ,  Issue: 2 )