By Topic

Protocol design and delay analysis of half-duplex buffered cognitive relay systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Chen ; Zhejiang University, Hangzhou, China ; Vincent K. N. Lau ; Shunqing Zhang ; Peiliang Qiu

In this paper, we quantify the benefits of employing relay station in large-coverage cognitive radio systems which opportunistically access the licensed spectrum of some small-coverage primary systems scattered inside. Through analytical study, we show that even a simple decode-and-forward (SDF) relay, which can hold only one packet, offers significant pathloss gain in terms of the spatial transmission opportunities and link reliability. However, such scheme fails to capture the spatial-temporal burstiness of the primary activities, that is, when either the source-relay (SR) link or relay-destination (RD) link is blocked by the primary activities, the cognitive spectrum access has to stop. To overcome this obstacle, we further propose buffered decode-and-forward (BDF) protocol. By exploiting the infinitely long buffer at the relay, the blockage time on either SR or RD link is saved for cognitive spectrum access. The buffer gain is shown analytically to improve the stability region and average end-to-end delay performance of the cognitive relay system.

Published in:

IEEE Transactions on Wireless Communications  (Volume:9 ,  Issue: 3 )