Cart (Loading....) | Create Account
Close category search window
 

Propagating learned behaviors from a virtual agent to a physical robot in reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yamaguchi, T. ; Dept. of Syst. Eng., Osaka Univ., Japan ; Masubuchi, M. ; Tanaka, Y. ; Yachida, M.

For a physical robot to acquire behaviors, it is important for it to learn in the physical environment. Since reinforcement learning requires large computation costs as well as a lot of time in the physical environment, most research has performed learning by simulation. However, this does not work well in the real world. Realizing reinforcement learning of a physical robot in a physical environment requires both an adaptation for the diversity of possible situations and a high-speed learning method that can learn from fewer trials. This paper describes cooperative reinforcement learning based on propagating the learned behaviors of a virtual agent to a physical robot in order to accelerate learning in a physical environment. The method consists of two parts: (1) preparation learning in a virtual environment to accelerate initial learning, which accounts for most of the learning cost; and, (2) refinement learning in a physical environment by using the virtual learning results as an initial behavior set of a physical robot. Experimental results are given for a ball-pushing task with the physical robot and a virtual agent

Published in:

Evolutionary Computation, 1996., Proceedings of IEEE International Conference on

Date of Conference:

20-22 May 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.