By Topic

Two-Dimensional Radiation MHD K-Shell Modeling of Stainless-Steel Double-Wire-Array Experiments on the Refurbished Z Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Thornhill, J.W. ; Naval Res. Lab., Washington, DC, USA ; Giuliani, J.L. ; Dasgupta, A. ; Apruzese, J.P.
more authors

Two-dimensional (r, z) magnetohydrodynamic simulations with nonlocal thermodynamic equilibrium ionization and radiation transport are used to investigate the K-shell radiation output from doubly nested large-diameter (> 60 mm) stainless-steel arrays fielded on the refurbished Z pulsed-power generator. The effects of the initial density perturbations, wire ablation rate, and current loss near the load on the total power, K-shell power, and K-shell yield are examined. The broad mass distribution produced by wire ablation largely overcomes the deleterious impact on the K-shell power and yield of 2-D instability growth. On the other hand, the possible current losses in the final feed section lead to substantial reductions in K-shell yield. Following a survey of runs, the parameters for the perturbation level, ablation rate, and current loss are chosen to benchmark the simulations against existing 65-mm-diameter radiation data. The model is then used to predict the K-shell properties of larger diameter (70 mm) arrays to be imploded on the Z generator.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 4 )