By Topic

Fitting Multiple Connected Ellipses to an Image Silhouette Hierarchically

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Da Xu, R.Y. ; Sch. of Comput. & Math., Univ. of Technol., Sydney, NSW, Australia ; Kemp, M.

In this paper, we seek to fit a model, specified in terms of connected ellipses, to an image silhouette. Some algorithms that have attempted this problem are sensitive to initial guesses and also may converge to a wrong solution when they attempt to minimize the objective function for the entire ellipse structure in one step. We present an algorithm that overcomes these issues. Our first step is to temporarily ignore the connections, and refine the initial guess using unconstrained Expectation-Maximization (EM) for mixture Gaussian densities. Then the ellipses are reconnected linearly. Lastly, we apply the Levenberg-Marquardt algorithm to fine-tune the ellipse shapes to best align with the contour. The fitting is achieved in a hierarchical manner based upon the joints of the model. Experiments show that our algorithm can robustly fit a complex ellipse structure to a corresponding shape for several applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 7 )