By Topic

Accurate EM-Based Modeling of Cascode FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Resca, D. ; Microwave Electron. for Commun., MEC s.r.l., Bologna, Italy ; Lonac, J.A. ; Cignani, R. ; Raffo, A.
more authors

Cascode field-effect transistors (FETs) are widely used in the design of monolithic microwave integrated circuits (MMICs), owing to their almost unilateral and broadband behavior. However, since a dedicated model of the cell is rarely provided by foundries, a suboptimal description built by replicating the standard foundry model for both the common source and common gate device is often adopted. This might limit the success of the MMIC design at the first foundry run. This paper describes an electromagnetic-based empirical model of cascode cells, covering topics from the formulation and identification procedures to the corresponding validation described in an exhaustive experimental section. A MMIC low-noise distributed amplifier case is then presented and the proposed model is used for circuit analysis and instability detection. Clear indication is provided about the improvement in the prediction of critical behaviors with respect to conventional modeling approaches. A cascode cell with a symmetric layout is also successfully modeled.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 4 )