By Topic

Comprehensive Noise Characterization and Modeling for 65-nm MOSFETs for Millimeter-Wave Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Using an external tuner-based method, this paper demonstrates a complete millimeter-wave noise characterization and modeling up to 60 GHz for 65-nm MOSFETs for the first time. Due to channel length modulation, the channel noise continues to increase and remains the most important noise source in the millimeter-wave band. Our experimental results further show that, with the downscaling of channel length, the gate resistance has more serious impact on the high-frequency noise parameters than the substrate resistance even in the millimeter-wave frequency.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 4 )