By Topic

FPGA-Based Real-Time Emulation of Power Electronic Systems With Detailed Representation of Device Characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aung Myaing ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada ; Dinavahi, V.

This paper presents a field-programmable gate array (FPGA)-based real-time digital simulator for power electronic apparatus based on a realistic device-level behavioral model. A three-level 12-pulse voltage source converter (VSC)-fed induction machine drive is implemented on the FPGA. The VSC model is computed at a fixed time step of 12.5 ns, allowing a realistic representation of insulated-gate bipolar transistor (IGBT) nonlinear switching characteristics and power losses. The simulator also models a squirrel-cage induction machine, a direct field-oriented control system, and a pulsewidth modulator to achieve the real-time simulation of the complete drive system. All the models have been implemented using very high speed integrated circuit hardware description language (VHDL). Real-time simulation results have been validated using the measured device-level IGBT characteristics.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 1 )