By Topic

Input Power Factor Compensation Algorithms Using a New Direct-SVM Method for Matrix Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nguyen, H.M. ; Sch. of Electr. Eng., Univ. of Ulsan, Ulsan, South Korea ; Hong-Hee Lee ; Tae-Won Chun

An input filter is necessary for a matrix converter (MC) system to improve the input current quality with low harmonic components, as well as to reduce the input voltage distortion supplied to the MC. However, the input filter's characteristics make the input power factor (IPF) obtained at unity only in the presence of high output loads, and the IPF degrades significantly under light-load conditions. In this paper, we propose a new direct space vector modulation (DSVM) method to achieve the required displacement angle between the input voltage and input current of the MC. A new switching strategy is introduced based on the maximum compensated angle. Then, power factor compensation algorithms using the new DSVM method to achieve the maximum IPF are presented, in which compensation algorithm I is based on using the input filter and power supply parameters to estimate the optimal compensated angle. Compensation algorithm II is subsequently proposed using a proportional-integral controller to overcome drawbacks presented in compensation algorithm I. Simulation and experimental results are shown to validate the effectiveness of the proposed compensation algorithms.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 1 )