By Topic

A Particle Filtering Framework for Joint Video Tracking and Pose Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chong Chen ; Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago ; Dan Schonfeld

A method is introduced to track the object's motion and estimate its pose directly from 2-D image sequences. Scale-invariant feature transform (SIFT) is used to extract corresponding feature points from image sequences. We demonstrate that pose estimation from the corresponding feature points can be formed as a solution to Sylvester's equation. We show that the proposed approach to the solution of Sylvester's equation is equivalent to the classical SVD method for 3D-3D pose estimation. However, whereas classical SVD cannot be used for pose estimation directly from 2-D image sequences, our method based on Sylvester's equation provides a new approach to pose estimation. Smooth video tracking and pose estimation is finally obtained by using the solution to Sylvester's equation within the importance sampling density of the particle filtering framework. Finally, computer simulation experiments conducted over synthetic data and real-world videos demonstrate the effectiveness of our method in both robustness and speed compared with other similar object tracking and pose estimation methods.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 6 )