By Topic

A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Syed Muhammad Raza Kazmi ; Department of Electrical and Communication Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan ; Hiroki Goto ; Hai-Jiao Guo ; Osamu Ichinokura

This paper proposes a novel solution to the problems that exist in the conventional hill climb searching (HCS) maximum power point tracking (MPPT) algorithm for the wind energy conversion system. The presented solution not only solves the tracking speed versus control efficiency tradeoff problem of HCS but also makes sure that the changing wind conditions do not lead HCS in the wrong direction. It intelligently adapts the variable step size to keep up with the rapid changes in the wind and seizes the perturbation at the maxima to yield 100% control efficiency. For this purpose, a novel peak detection capability has been devised which, in contrast with conventional peak detection, can work robustly under changing wind conditions. The proposed MPPT performs self-tuning to cope with the nonconstant efficiencies of the generator-converter subsystems-a phenomenon quite rarely discussed in research papers so far. In addition, a smart speed-sensorless scheme has been developed to avoid the use of mechanical sensors. The experimental results confirm that the proposed algorithm is remarkably faster and more efficient than the conventional HCS.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 1 )