By Topic

Processing of Harmonics and Interharmonics Using an Adaptive Notch Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mojiri, M. ; Dept. of Electr. & Comput. Eng., Isfahan Univ. of Technol., Isfahan, Iran ; Karimi-Ghartemani, M. ; Bakhshai, A.

A method for real-time detection and extraction of individual harmonic and interharmonic components in a power signal with potentially time-varying characteristics is presented. The proposed method, which is based on the concept of adaptive notch filter (ANF), adaptively decomposes the measured power signal into its constituting components independent of where their frequencies are located. The algorithm provides instantaneous values of the various estimated frequency components in addition to the values of their frequencies, amplitudes, and phase angles. The structure and mathematical formulation of the proposed technique, including guidelines for its parameter tuning, are presented and its performance is studied in a variety of scenarios where the power signal attributes, such as fundamental frequency and amplitude, undergo variations over time. This study confirms the desirable transient and steady-state performances of the proposed method. Compared with its recently proposed counterpart, the proposed method of this paper obviates the need for using a phase-locked loop (PLL), and hence, offers a more simplified structure which makes it more attractive from an implementation point of view.

Published in:

Power Delivery, IEEE Transactions on  (Volume:25 ,  Issue: 2 )