Cart (Loading....) | Create Account
Close category search window

The proximity of the strain induced effect to improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-effect transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsieh, E.R. ; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan ; Chung, S.S.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The source/drain in an n-channel metal-oxide-semiconductor field-effect transistor (nMOSFET) with solid phase epitaxial (SPE) implanted Si:C before the spacer formation is proposed. Compared to the conventional nMOSFET with SPE implanted Si:C after the spacer formation, it brings in proximity to the device channel and shows great improvement of electron mobility via the stronger tensile strain effect. Experimental measurements showed that the electron mobility in the proposed process is increased by 105% over that of the control devices. At a gate length of 40 nm, an increase of more than 67% for the drain current, comparing to those of the conventional Si:C source/drain nMOSFET, has been achieved.

Published in:

Applied Physics Letters  (Volume:96 ,  Issue: 9 )

Date of Publication:

Mar 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.