By Topic

A game-theoretic approach to joint rate and power control for uplink CDMA communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Musku, M.R. ; Dept. of Electr. & Comput. Eng., Univ. of Texas at San Antonio, San Antonio, TX, USA ; Chronopoulos, A.T. ; Popescu, D.C. ; Stefanescu, A.

Next generation wireless systems will be required to support heterogeneous services with different transmission rates that include real time multimedia transmissions, as well as non-real time data transmissions. In order to provide such flexible transmission rates, efficient use of system resources in next generation systems will require control of both data transmission rate and power for mobile terminals. In this paper we formulate the problem of joint transmission rate and power control for the uplink of a single cell CDMA system as a non-cooperative game. We assume that the utility function depends on both transmission rates and powers and show the existence of Nash equilibrium in the non-cooperative joint transmission rate and power control game (NRPG). We include numerical results obtained from simulations that compare the proposed algorithm with a similar one which is also based on game theory and it also updates the transmission rates and powers simultaneously in a single step.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 3 )