Cart (Loading....) | Create Account
Close category search window

Performance of dual-hop amplify-and-forward beamforming and its equivalent systems in rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jung-Bin Kim ; Dept. of Electr. Eng. & Comput. Sci., Hanyang Univ., Ansan, South Korea ; Dongwoo Kim

Combining a dual-hop relaying with multi-input multi-output (MIMO) transmission is a natural extension to overcome the channel impairments. Transmit beamforming (TBF) and maximal ratio combining (MRC) are widely accepted ones, which maximize the signal-to-noise ratio (SNR) at the receiver when channel state information is available. With these methods, there are four possible combinations in constructing dual-hop transmission: TBF-TBF, MRC-MRC, MRC-TBF, and TBF-MRC, respectively. We provide optimal amplify-and-forward (AF) weights at a relay, which maximize the end-to-end SNR for the four systems, respectively, and show the equivalence of the four systems in terms of the SNR. Using relaxed AF weights from the optimal ones, we provide a probability density function (PDF) and a moment generating function (MGF) for the end-to- end SNR per bit with an assumption of an equal number of diversity branch for each hop, which is used to obtain the BER performance for M-ary QAM and PSK constellations, respectively. Numerical results show that the BERs with the relaxed AF weights provide tight lower bounds for those with optimal AF weights. We also compare the BER performance of above AF relaying with that of dual-hop decode-and-forward (DF) relaying.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.