By Topic

On a Stochastic Delay Bound for Disrupted Vehicle-to-Infrastructure Communication with Random Traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Atef Abdrabou ; Dept. of Elec. & Comp. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Weihua Zhuang

This paper studies the multihop packet delivery delay in a disrupted vehicle-to-infrastructure communication scenario, where an end-to-end connected path is not likely to exist between a vehicle and the nearest road side unit (RSU) due to the intermittent connectivity between adjacent vehicles. We present an analytical framework that takes into account the randomness of vehicle traffic and the statistical variation of the disrupted communication channel. Our framework employs the effective bandwidth theory and its dual, the effective capacity concept, in order to obtain the maximum distance between adjacent RSUs that stochastically limits the worst case packet delivery delay to a certain maximum value (i.e., allows only an arbitrarily small fraction of packets received by the RSU from the farthest vehicle to exceed a required delay bound). Simulation results demonstrate that our analytical framework is accurate in determining the separation distance between RSUs that probabilistically limit the worst case delay bound.

Published in:

Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE

Date of Conference:

Nov. 30 2009-Dec. 4 2009