Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

From Trees to DAGs: Improving the Performance of Bridged Ethernet Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Avin, C. ; Dept. of Commun. Syst. Eng., Ben Gurion Univ. of the Negev, Beer-Sheva, Israel ; Giladi, R. ; Lev-Tov, N. ; Lotker, Z.

Ethernet is widely used in Local Area Networks (LANs) due to its simplicity and cost effectiveness. Today, a great deal of effort is being devoted to extending Ethernet capabilities in order to elevate it from a LAN technology to a ubiquitous networking technology, suitable for deployment in Metropolitan Area Networks (MANs) and even in core, Wide Area Networks (WANs). Current standardized Ethernet networks are based on a spanning tree topology, using the Rapid Spanning Tree Protocol (RSTP) or Multiple Spanning Tree Protocol (MSTP). The spanning tree architecture is useful for avoiding forwarding loops, but may lead to low link utilization and long failure recovery time. In this paper we propose to shift from tree to Directed Acyclic Graph (DAG) topologies and offer a new bridged Ethernet architecture called Orient. Orient is based on assigning an orientation state to each port in the network in order to prevent loops. Thus, the Orient architecture enables a full utilization of all network links and ports, while maintaining simplicity of implementation and compliance with the standardized spanning tree protocols.

Published in:

Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE

Date of Conference:

Nov. 30 2009-Dec. 4 2009