By Topic

An EM Algorithm for Path Delay and Complex Gain Estimation of Slowly Varying Fading Channel for CPM Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abeida, H. ; GIPSA-Lab.\DIS, St. Martin d''Heres, France ; Brossier, J.-M. ; Ros, L. ; Vila-Valls, J.

This paper addresses the joint path delay and time-varying complex gain estimation for continuous phase modulation (CPM) over a time-selective slowly varying flat Rayleigh fading channel. We propose an expectation-maximization (EM) algorithm for path delay estimation in a Kalman smoother framework. The time-varying complex gain is modeled by a first order autoregressive (AR) process. Such a modeling yields to the representation of the problem by a dynamic Bayesian system in a state-space form that allows the application of EM algorithm in the context of unobserved data for obtaining an estimate of the path delay. This is used with Kalman smoother for state estimation. We derive analytically a closed-form expression of the modified hybrid Cramer-Rao bound (MHCRB) for path delay and complex gain parameters. Finally, some numerical examples are presented to illustrate the performance of the proposed algorithm compared to the conventional generalized correlation method and to the MHCRB.

Published in:

Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE

Date of Conference:

Nov. 30 2009-Dec. 4 2009