By Topic

Design and Evaluation of a New Localization Scheme for Underwater Acoustic Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Bian ; Memorial Univ. of Newfoundland, St. John's, NL, Canada ; R. Venkatesan ; Cheng Li

Underwater acoustic sensor networks are quite different from terrestrial wireless sensor networks. Localization for underwater applications is different due to the bandwidth limited acoustic communication, sparsely distributed network deployment, and more expensive and powerful sensor nodes. In this paper, we propose a new scheme to achieve better localization accuracy for underwater acoustic sensor networks. Instead of using the commonly adopted circle-based event detection and least squares algorithm based location estimation, the proposed scheme utilizes the hyperbola-based approach for event localization and a normal distribution for estimation error modeling and calibration. Our analysis and simulation results indicate that the performance of the proposed scheme is clearly better than those from the least squares location estimation based localization schemes.

Published in:

Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE

Date of Conference:

Nov. 30 2009-Dec. 4 2009