By Topic

Superresolution Enhancement of Hyperspectral CHRIS/Proba Images With a Thin-Plate Spline Nonrigid Transform Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chan, J.C. ; Dept. of Geogr., Vrije Univ. Brussel, Brussels, Belgium ; Jianglin Ma ; Kempeneers, P. ; Canters, F.

Given the hyperspectral-oriented waveband configuration of multiangular CHRIS/Proba imagery, the scope of its application could widen if the present 18-m resolution would be improved. The multiangular images of CHRIS could be used as input for superresolution (SR) image reconstruction. A critical procedure in SR is an accurate registration of the low-resolution images. Conventional methods based on affine transformation may not be effective given the local geometric distortion in high off-nadir angular images. This paper examines the use of a nonrigid transform to improve the result of a nonuniform interpolation and deconvolution SR method. A scale-invariant feature transform is used to collect control points (CPs). To ensure the quality of CPs, a rigorous screening procedure is designed: 1) an ambiguity test; 2) the m-estimator sample consensus method; and 3) an iterative method using statistical characteristics of the distribution of random errors. A thin-plate spline (TPS) nonrigid transform is then used for the registration. The proposed registration method is examined with a Delaunay triangulation-based nonuniform interpolation and reconstruction SR method. Our results show that the TPS nonrigid transform allows accurate registration of angular images. SR results obtained from simulated LR images are evaluated using three quantitative measures, namely, relative mean-square error, structural similarity, and edge stability. Compared to the SR methods that use an affine transform, our proposed method performs better with all three evaluation measures. With a higher level of spatial detail, SR-enhanced CHRIS images might be more effective than the original data in various applications.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 6 )