By Topic

Architectural Exploration of Chip-Scale Photonic Interconnection Network Designs Using Physical-Layer Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chan, J. ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Hendry, G. ; Biberman, A. ; Bergman, K.

Chip-scale photonic interconnection networks have emerged as a promising technology solution that can address many of the scalability challenges facing the communication networks in next-generation high-performance multicore processors. Photonic interconnects can offer significantly higher bandwidth density, lower latencies, and better energy efficiency. Even though photonics exhibits these inherent advantages over electronics, the network designs that can successfully leverage these benefits cannot be straightforwardly extracted from typical electronic network methodologies and must consider the many unique physical-layer constraints of optical technologies. We conduct an architectural exploration of four chip-scale photonic interconnection networks in a novel simulation environment, measuring insertion loss, crosstalk, and power. We also explain and demonstrate the impact of these physical-layer metrics on the scalability, performance, and realizability of each design.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 9 )