Cart (Loading....) | Create Account
Close category search window

Mask-Free Production of Integratable Monolithic Micro Logarithmic Axicon Lenses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiao-Feng Lin ; State Key Lab. on Integrated Optoelectron., Jilin Univ., Changchun, China ; Chen, Qi-Dai ; Niu, Li-Gang ; Tong Jiang
more authors

Although unique properties such as creation of nondiffracting beams and as a result the large focal depth have been exhibited from axicon lenses, and numerous important applications in optical signal processing and imaging have been demonstrated, axicons of dimensions smaller than a hundred of micrometers have not yet been reported. It is technically quite challenging for the currently available technologies including lithography and mechanical shaping to define complicated three-dimensional surface profiles depicted by lens functions in the small scale. Here, we report the solution of the issue by use of femtosecond laser nanofabrication via two-photon polymerization of resins. Not only well-defined monolithic micro axicons are attained, they demonstrate excellent optical characteristics: the cross-sectional Besselian beam intensity distribution was found almost unchanged for at least 200 ??m within the focal range; imaging remains unblurred and in high contrast in a much wider range than that for a common lens. The direct laser nanowriting strategy would allow the lens integrated with other optical components produced the same way, or incorporated to an existing micro-optical system.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 8 )

Date of Publication:

April15, 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.