By Topic

Real-Time Digital Signal Processing for the Generation of Optical Orthogonal Frequency-Division-Multiplexed Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Yannis Benlachtar ; Department of Electronic and Electrical Engineering, University College London, London, U.K. ; Philip M. Watts ; Rachid Bouziane ; Peter A. Milder
more authors

In this paper, we investigate the design of a field-programmable-gate-array (FPGA) based optical orthogonal frequency-division multiplexing (OFDM) transmitter implementing real-time digital signal processing at 21.4 GSample/s. The transmitter was utilized to generate 8.34 Gb/s QPSK-OFDM signals for direct detection. We study the impact of the finite resolutions of the inverse fast Fourier transform cores and the digital-to-analog converters on the system performance. Furthermore, we describe a transmission experiment over 800 and 1600 km of uncompensated standard fiber with negligible optical SNR penalties and bit error rate <; 10-3.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:16 ,  Issue: 5 )