By Topic

A hybrid GP/GA approach for co-evolving controllers and robot bodies to achieve fitness-specified tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Po Lee ; Dept. of Artificial Intelligence, Edinburgh Univ., UK ; Hallam, J. ; Lund, H.H.

Evolutionary approaches have been advocated to automate robot design. Some research work has shown the success of evolving controllers for the robots by genetic approaches. As we can observe, however, not only the controller but also the robot body itself can affect the behavior of the robot in a robot system. We develop a hybrid GP/GA approach to evolve both controllers and robot bodies to achieve behavior-specified tasks. In order to assess the performance of the developed approach, it is used to evolve a simulated agent, with its own controller and body, to do obstacle avoidance in the simulated environment. Experimental results show the promise of this work. In addition, the importance of co-evolving controllers and robot bodies is analyzed and discussed

Published in:

Evolutionary Computation, 1996., Proceedings of IEEE International Conference on

Date of Conference:

20-22 May 1996