Cart (Loading....) | Create Account
Close category search window
 

Auto-Calibrated Parallel Imaging Reconstruction for Arbitrary Trajectories Using {\bf k} -Space Sparse Matrices (kSPA)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chunlei Liu ; Brain Imaging & Anal. Center, Duke Univ., Durham, NC, USA ; Jian Zhang ; Moseley, M.E.

Image acquisition of magnetic resonance imaging (MRI) can be accelerated by using multiple receiving coils simultaneously. The problem of reconstructing an unaliased image from partially sampled k-space data can be formulated as a large system of sparse linear equations. The k-space sparse matrix (kSPA) algorithm proposes to solve the system of equations by finding a sparse approximate inverse. This algorithm has been shown to accelerate the image reconstruction for a large number of coils. The original kSPA algorithm requires knowledge of coil sensitivities. Here, we propose and demonstrate an auto-calibrated kSPA algorithm that does not require the explicit computation of the coil sensitivity maps. We have also shown that calibration data, in principle, can be acquired at any region of k-space. This property applies to arbitrary sampling trajectories and all reconstruction algorithms based on k-space. In practice, because of its higher SNR, calibration data acquired at the center of k-space performed more favorably. Such auto-calibration can be advantageous in cases where an accurate sensitivity map is difficult to obtain.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.