By Topic

Optimal Experimental Design for Diffusion Kurtosis Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Poot, D.H.J. ; IBBT-Vision Lab., Univ. of Antwerp, Antwerp, Belgium ; den Dekker, A.J. ; Achten, E. ; Verhoye, M.
more authors

Diffusion kurtosis imaging (DKI) is a new magnetic resonance imaging (MRI) model that describes the non-Gaussian diffusion behavior in tissues. It has recently been shown that DKI parameters, such as the radial or axial kurtosis, are more sensitive to brain physiology changes than the well-known diffusion tensor imaging (DTI) parameters in several white and gray matter structures. In order to estimate either DTI or DKI parameters with maximum precision, the diffusion weighting gradient settings that are applied during the acquisition need to be optimized. Indeed, it has been shown previously that optimizing the set of diffusion weighting gradient settings can have a significant effect on the precision with which DTI parameters can be estimated. In this paper, we focus on the optimization of DKI gradients settings. Commonly, DKI data are acquired using a standard set of diffusion weighting gradients with fixed directions and with regularly spaced gradient strengths. In this paper, we show that such gradient settings are suboptimal with respect to the precision with which DKI parameters can be estimated. Furthermore, the gradient directions and the strengths of the diffusion-weighted MR images are optimized by minimizing the Crame??r-Rao lower bound of DKI parameters. The impact of the optimized gradient settings is evaluated, both on simulated as well as experimentally recorded datasets. It is shown that the precision with which the kurtosis parameters can be estimated, increases substantially by optimizing the gradient settings.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 3 )