By Topic

Feature selection using bag-of-visual-words representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
AG Faheema ; Centre for AI and Robotics(CAIR), DRDO Complex, C V Raman Nagar, Bangalore - 560093, India ; Subrata Rakshit

In this paper, we introduce an efficient method to substantially increase the recognition performance of object recognition by employing feature selection method using bag-of-visual-word representation. The proposed method generates visual vocabulary from a large set of images using visual vocabulary tree. Images are represented by a vector of weighted word frequencies. We have introduced on-line feature selection method, which for a given query image selects the relevant features from a large weighted word vector. The learned database image vectors are also reduced using the selected features. This will improve the classification accuracy and also reduce the overall computational complexity by dimensionality reduction of the classification problem. In addition, it will help us in discarding the irrelevant features, which if selected will deteriorate the classification results. We have demonstrated the efficiency our method on the Caltech dataset.

Published in:

Advance Computing Conference (IACC), 2010 IEEE 2nd International

Date of Conference:

19-20 Feb. 2010