Cart (Loading....) | Create Account
Close category search window
 

An Evaluation of the Use of Atmospheric and BRDF Correction to Standardize Landsat Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fuqin Li ; Nat. Earth Obs. Group, Geosci. Australia, ACT, Australia ; Jupp, D.L.B. ; Reddy, S. ; Lymburner, L.
more authors

Normalizing for atmospheric and land surface bidirectional reflectance distribution function (BRDF) effects is essential in satellite data processing. It is important both for a single scene when the combination of land covers, sun, and view angles create anisotropy and for multiple scenes in which the sun angle changes. As a consequence, it is important for inter-sensor calibration and comparison. Procedures based on physics-based models have been applied successfully with the Moderate Resolution Imaging Spectroradiometer (MODIS) data. For Landsat and other higher resolution data, similar options exist. However, the estimation of BRDF models using internal fitting is not available due to the smaller variation of view and solar angles and infrequent revisits. In this paper, we explore the potential for developing operational procedures to correct Landsat data using coupled physics-based atmospheric and BRDF models. The process was realized using BRDF shape functions derived from MODIS with the MODTRAN 4 radiative transfer model. The atmospheric and BRDF correction algorithm was tested for reflectance factor estimation using Landsat data for two sites with different land covers in Australia. The Landsat reflectance values had a good agreement with ground based spectroradiometer measurements. In addition, overlapping images from adjacent paths in Queensland, Australia, were also used to validate the BRDF correction. The results clearly show that the algorithm can remove most of the BRDF effect without empirical adjustment. The comparison between normalized Landsat and MODIS reflectance factor also shows a good relationship, indicating that cross calibration between the two sensors is achievable.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:3 ,  Issue: 3 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.