By Topic

Spectrum Sharing Between Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grokop, L.H. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Tse, D.N.C.

We consider the problem of two wireless networks operating on the same (presumably unlicensed) frequency band. Pairs within a given network cooperate to schedule transmissions, but between networks there is competition for spectrum. To make the problem tractable, we assume transmissions are scheduled according to a random access protocol where each network chooses an access probability for its users. A game between the two networks is defined. We characterize the Nash Equilibrium behavior of the system. Three regimes are identified: one in which both networks simultaneously schedule all transmissions, one in which the denser network schedules all transmissions and the sparser only schedules a fraction, and one in which both networks schedule only a fraction of their transmissions. The regime of operation depends on the path loss exponent α, the latter regime being desirable but attainable only for α > 4. This suggests that in certain environments, rival wireless networks may end up naturally cooperating. To substantiate our analytical results, we simulate a system where networks iteratively optimize their access probabilities in a greedy manner. We also discuss a distributed scheduling protocol that employs carrier sensing and demonstrate via simulations that again a near cooperative equilibrium exists for sufficiently large α.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:18 ,  Issue: 5 )