By Topic

Thickness Reduction and Performance Enhancement of Steerable Square Loop Antenna Using Hybrid High Impedance Surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Deo, P. ; Multidiscipl. Nano Technol. Centre, Swansea Univ., Swansea, UK ; Mehta, A. ; Mirshekar-Syahkal, D. ; Massey, P.J.
more authors

In order to reduce the thickness of a steerable beam square loop antenna, the effects of combining it with various periodic high impedance surfaces (HISs) are investigated. When a via-less HIS is used, the radiation pattern has high side lobes, which are shown to be due to surface waves propagating in the HIS lattice. Using a HIS with vias between the plates and ground removes the surface waves, but the beam is distorted due to strong coupling between the HIS's vias and the antenna element. Consequently a hybrid HIS is designed. This uses a via-less lattice beneath the loop, with vias at the edge of the HIS to suppress surface wave propagation. Consequently, a square loop antenna with four feeds on a hybrid HIS substrate is proposed for beam steering applications. This antenna has a low-profile with a total thickness of 4.69 mm for a test frequency band of 4.3 GHz to 5.0 GHz. It exhibits a gain of 8.65 dB at the test frequency (4.7 GHz). Compared to the earlier reported steerable square loop antenna, the new antenna achieves a 61% reduction in substrate thickness, a bandwidth enhancement by 150 MHz and an increase in gain by 1.95 dB.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 5 )