By Topic

Characterization and Modeling of 1/ f Noise in Si-nanowire FETs: Effects of Cylindrical Geometry and Different Processing of Oxides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Rock-Hyun Baek ; Pohang Univ. of Sci. & Technol., Pohang, South Korea ; Chang-Ki Baek ; Choi, Hyun-Sik ; Jeong-Soo Lee
more authors

In this paper, the volume trap densities Nt are extracted from gate-all-around silicone-nanowire FETs with different gate oxides, using a cylindrical-coordinate-based flicker noise model developed. For extracting Nt, the drain-current power spectral densities were measured from a large number of identical devices and averaged over, thereby mimicking the spatial distribution of trap sites inducing 1/f curve. Also, effective mobility and threshold voltage were simultaneously extracted with the series resistance to characterize the 1/f noise in terms of intrinsic values of these two channel parameters. The volume trap densities thus extracted from different oxides (in situ steam-generated oxide/rapid thermal oxide/nitride-gated oxide) are compared and further examined using hot-carrier stress data. Finally, radius dependence of the cylindrical 1/f model developed is discussed.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:10 ,  Issue: 3 )