By Topic

Mixture Analysis by Multichannel Hopfield Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shaohui Mei ; Dept. of Electron. & Inf. Eng., Northwestern Polytech. Univ., Xi''an, China ; Mingyi He ; Zhiyong Wang ; Dagan Feng

Due to the spatial-resolution limitation, mixed pixels containing energy reflected from more than one type of ground objects are widely present in remote sensing images, which often results in inefficient quantitative analysis. To effectively decompose such mixtures, a fully constrained linear unmixing algorithm based on a multichannel Hopfield neural network (MHNN) is proposed in this letter. The proposed MHNN algorithm is actually a Hopfield-based architecture which handles all the pixels in an image synchronously, instead of considering a per-pixel procedure. Due to the synchronous unmixing property of MHNN, a noise energy percentage (NEP) stopping criterion which utilizes the signal-to-noise ratio is proposed to obtain optimal results for different applications automatically. Experimental results demonstrate that the proposed multichannel structure makes the Hopfield-based mixture analysis feasible for real-world applications with acceptable time cost. It has also been observed that the proposed MHNN-based mixture-analysis algorithm outperforms the other two popular linear mixture-analysis algorithms and that the NEP stopping criterion can approach optimal unmixing results adaptively and accurately.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 3 )