By Topic

Propagation and Scattering of Spherical Wave Pulses in Vegetation Using Scalar Transport Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Whitman, G.M. ; Electr. & Comput. Eng. Dept., New Jersey Inst. of Technol., Newark, NJ, USA ; Wu, M.Y.-C. ; Schwering, F.K.

A high frequency theoretical model of propagation and scattering in vegetation is presented which uses scalar radiative transport theory. The specific problem analyzed is that of a periodic sequence of Gaussian pulses incident from free space into a forest region (vegetation). The incident pulse train is taken to be a spherical wave that is restricted to a specified solid angle, which is characteristic of radiation produced by a microwave or mm-wave antenna. The forest is modeled as a half-space of randomly distributed particles that scatter and absorb electromagnetic energy. In the forest, strong forward scattering occurs and the theory allows for a comprehensive characterization of the effect of vegetation on the propagation and scattering of spherical wave pulses: their attenuation, their angular spread, their distortion due to pulse broadening.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 5 )