By Topic

Obstacle detection, avoidance and anti collision for MEREDITH AUV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ken Teo ; DSO Nat. Labs., Singapore, Singapore ; Ong, K.W. ; Lai, H.C.

This paper describes the design and implementation of an obstacle detection, obstacle avoidance and anti-collision system using a COTS multi-beam forward looking sonar. The purpose is to equip our in-house built MEREDITH autonomous underwater vehicle the capability to navigate around obstacles that arise in its programmed path. This is important for operating near the littorals, where potential hazards are prevalent. For such a system, the ability to identify unknown obstacles and discards false returns and noise is an important issue and extremely challenging. The crux of the problem is to correctly pick-up potential obstacles from the sonar image. To address this problem, image processing technique is employed to extract potential obstacles from the sonar image. This is follow by the employment of a real-time multi-frame filter to confirm the presence of obstacles. Subsequently, confirmed obstacles are put in a 2D grid map, which serves as a workspace representation for MEREDITH to perform real-time path planning. Simulation studies and sea trials were conducted to verify the implementation.

Published in:

OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges

Date of Conference:

26-29 Oct. 2009