By Topic

3D Multimedia Protection Using Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Motwani, M.C. ; Dept. of Comput. Sci. & Eng., Univ. of Nevada, Reno, NV, USA ; Bryant, B.D. ; Dascalu, S.M. ; Harris, F.C.

Watermarking based DRM implementations insert imperceptible information or watermark in digital media to trace owner of the content and deter the illegal distribution of media. In geometry based 3D watermarking algorithms, a watermark is inserted by modifying the coordinates of vertices in the mesh. It is a requirement of watermarking algorithms that this change in vertex coordinates shouldn't cause perceptible distortion. It has always been a challenge to select vertices in the 3D model which would not cause perceptible distortion on addition of watermark. This paper proposes a novel approach to overcome this challenge using Artificial Neural Networks (ANN). Feature vectors representing the geometry of the vertex and its surrounding vertices are extracted and used to train and simulate ANN. ANN is used as a classifier to determine which vertices should be selected for watermarking. Experimental results simulate various attacks to test the robustness of the algorithm.

Published in:

Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE

Date of Conference:

9-12 Jan. 2010