By Topic

Analysis of mixed-signal manufacturability with statistical technology CAD (TCAD)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hanson, D.A. ; Nat. Semicond. Corp., Santa Clara, CA, USA ; Goossens, R.J.G. ; Redford, M. ; McGinty, J.
more authors

We have developed a methodology which combines technology CAD (TCAD) simulation with statistical analysis of empirical data to predict and control the manufacturability of IC fabrication processes. As a result, manufacturing tolerance or sigma-based models (also known as worst-case models) can be determined before a significant sample size of fabricated devices can be characterized. Early on in the development cycle, empirical data is collected, and models built from simulated data are refined. These revised models are used to determine process control limits, and optimize in-line and electrical test measurement (E-test) for maximum observability of variation. As the process is stabilized, further refined models are used to perform yield diagnosis and tolerance analysis of circuits. This methodology has been applied to a number of BJT and submicrometer CMOS processes to create predictive sigma-based models, modify the fabrication recipe to meet objective specifications as development proceeds, and finally use them to control the manufacturing line

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:9 ,  Issue: 4 )