By Topic

Tree-Based Minimization of TCAM Entries for Packet Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yan Sun ; Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA ; Min Sik Kim

Packet classification is a fundamental task for network devices such as edge routers, firewalls, and intrusion detection systems. Currently, most vendors use Ternary Content Addressable Memories (TCAMs) to achieve high-performance packet classification. TCAMs use parallel hardware to check all rules simultaneously. Despite their high speed, TCAMs have a fundamental in dealing with ranges efficiently. Many packet classification rules contain range specifications, each of which needs to be translated into multiple prefixes to store in TCAMs. Such translation may result in an explosive increase in the number of required TCAM entries. In this paper, we propose a redundancy removal algorithm using a tree representation of rules. The proposed algorithm removes redundant rules and combines overlaying rules to build an equivalent, smaller rule set for a given packet classifier. This equivalent transformation can significantly reduce the number of required TCAM entries. Our experiments show a reduction of 70.9% in the number of TCAM entries. Besides, our algorithm eliminates requirement of priority encoder circuits. It can also be used as a preprocessor, in tandem with other methods, to achieve further performance improvement.

Published in:

Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE

Date of Conference:

9-12 Jan. 2010