By Topic

Design for Self-Organizing Fuzzy Neural Networks Based on Evolutionary Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Liu Fang ; Sch. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., Beijing, China

A novel hybrid learning algorithm based on a evolutionary programming to design a growing fuzzy neural network, named self-organizing fuzzy neural network based on evolutionary programming, to implement Takagi-Sugeno (TS) type fuzzy models is proposed in this paper. Construct and parameters of the fuzzy neural network is trained by evolutionary algorithms. Simulation results demonstrate that a compact and high performance fuzzy rule base can be constructed. Comprehensive comparisons with other approach show that the proposed approach is superior over other in terms of learning efficiency and performance.

Published in:

Computer Modeling and Simulation, 2010. ICCMS '10. Second International Conference on  (Volume:2 )

Date of Conference:

22-24 Jan. 2010