By Topic

A novel robotic visual perception method using object-based attention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The object-based attention theory has shown that perception processes only select relevant objects of the world which are then represented for action. Thus this paper proposes a novel computational method of robotic visual perception based on the object-based attention mechanism. It involves three modules: pre-attentive processing, attentional selection and perception learning. Visual scene is firstly segmented into discrete proto-objects pre-attentively and the gist of scene is identified as well. The attentional selection module simulates two types of modulation: bottom-up competition and top-down biasing. Bottom-up competition is evaluated by center-surround contrast; Given the task or scene category, the task-relevant object and a task-relevant feature of it is determined based on perception control rules and then used to evaluate top-down biasing. Following attentional selection, the attended object is put into perception learning module to update the existing object representations and perception control rules in long-term memory. An object representation consisting of between-object and within-object codings is built using probabilistic neural networks. An association memory using Bayesian network is also built to model perception control rules. Two types of robotic tasks are used to test this proposed model: task-specific object detection and landmark detection.

Published in:

Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on

Date of Conference:

19-23 Dec. 2009