By Topic

3D scene reconstruction based on a moving 2D laser range finder for service-robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Klimentjew, D. ; Dept. of Inf., Univ. of Hamburg, Hamburg, Germany ; Arli, M. ; Jianwei Zhang

This paper presents the simulation of a three-dimensional laser range finder based on a two-dimensional laser scanner and different moving units. We examine and describe two methods differing in the way the laser range finder is mounted. In addition, a Pan-Tilt-Unit and a robot manipulator are used as moving platforms. The qualities of the laser scanner and the originating point density, which are very important for the system design, as well as the mathematical grounds for the reconstruction will be introduced and discussed in detail. In the next step, the resulting transformation matrixes and error compensation will be reviewed. Relevant to the moving units, the registration methods and the possible scan strategy are described and discussed. The concurrent application of both systems permits the viewing of the scene from different perspectives. The surroundings can be reconstructed with the help of mathematical transformations depending on the physical design, the resulting structure consists of unorganised point clouds. The achieved results can be visualised with OpenGL or Java3D and used for surface reconstruction. This way, typical robotic tasks like collision avoidance, grasp calculation, or handling of objects can be realised.

Published in:

Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on

Date of Conference:

19-23 Dec. 2009