By Topic

Analytical expressions for correlation functions and Kirchhoff integrals for Gaussian surfaces with ocean-like spectra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaw, W.T. ; Oxford Syst. Solutions, UK ; Dougan, A.J. ; Tough, R.

We present closed-form expressions for the correlation functions associated with Gaussian surfaces with certain ocean-like spectra. These correlation functions may be used to derive asymptotic expansions for the Kirchhoff integral with a wide range of validity. Some comparisons with numerical simulations are also presented. Our analysis establishes that the Kirchhoff integral is well approximated by a Bragg scattering model at very high incidence angles (that is, well away from normal incidence) even when conditions for perturbation theory do not apply. We can compute the nonlinear corrections to Bragg explicitly-these corrections grow as one approaches normal incidence. A novel feature of our analysis is the use of the computer mathematics system Mathematica to construct the relevant asymptotic series. These results eliminate the need for extensive amounts of numerical fast Fourier transform (FFT) computation, and may also be used to simplify computations of scattering cross sections from more complex surfaces with spectra that are perturbations of those we have considered

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:44 ,  Issue: 11 )