By Topic

Signal processing and fabrication of a biomimetic tactile sensor array with thermal, force and microvibration modalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chia Hsien Lin ; Syntouch LLC, Los Angeles, CA, USA ; Erickson, T.W. ; Fishel, J.A. ; Wettels, N.
more authors

We have developed a finger-shaped sensor array that provides simultaneous information about the contact forces, microvibrations and thermal fluxes induced by contact with external objects. In this paper, we describe a microprocessor-based signal conditioning and digitizing system for these sensing modalities and its embodiment on a flex-circuit that facilitates efficient assembly of the entire system via injection molding. Thermal energy from the embedded electronics is used to heat the finger above ambient temperature, similar to the biological finger. This enables the material properties of contacted objects to be inferred from thermal transients measured by a thermistor in the sensor array. Combining sensor modalities provides synergistic benefits. For example, the contact forces for exploratory movements can be calibrated so that thermal and microvibration data can be interpreted more definitively.

Published in:

Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on

Date of Conference:

19-23 Dec. 2009