By Topic

3D CAD model search: A regularized manifold learning approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. P. Zhu ; Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 ; Y. S. Wong ; H. T. Loh ; W. F. Lu
more authors

3D model matching has been widely studied in computer vision, graphics and robotics. While there is much success made in the matching of natural objects, most of these approaches consider smooth surfaces and are not suitable for computer aided design (CAD) models because of their complex topology and singular structures. This paper presents a novel spectral approach for the 3D CAD model matching in the framework of manifold learning. The 3D models are treated as undirected graphs. A regularized Laplacian spectrum approach is applied to solve this problem where the regularization term is used to characterize the shape geometries. Spectral distributions of different models are obtained and then compared by their divergence for model retrieval. The proposed approach is tested with models from known 3D CAD database for verification.

Published in:

Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on

Date of Conference:

19-23 Dec. 2009