By Topic

Periodic Orbits and Equilibria in Glass Models for Gene Regulatory Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zinovik, I. ; LTNT Lab. of Thermodynamics in Emerging Technol., ETH Zurich, Zurich, Switzerland ; Chebiryak, Y. ; Kroening, D.

Glass models are frequently used to model gene regulatory networks. A distinct feature of the Glass model is that its dynamics can be formalized as paths through multi-dimensional binary hypercubes. In this paper, we report a broad range of results about Glass models that have been obtained by computing the binary codes that correspond to the hypercube paths. Specifically, we propose algorithmic methods for the synthesis of specific Glass networks based on these codes. In contrast to existing work, bi-periodic networks and networks possessing both stable equilibria and periodic trajectories are considered. The robustness of the attractor is also addressed, which gives rise to hypercube paths with nondominated nodes and double coils. These paths correspond to novel combinatorial problems, for which initial experimental results are presented. Finally, a classification of Glass networks with respect to their corresponding gene interaction graphs for three genes is presented.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 2 )