By Topic

Synergistic Coding by Cortical Neural Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aghagolzadeh, M. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Eldawlatly, S. ; Oweiss, K.

An essential step towards understanding how the brain orchestrates information processing at the cellular and population levels is to simultaneously observe the spiking activity of cortical neurons that mediate perception, learning, and motor processing. In this paper, we formulate an information theoretic approach to determine whether cooperation among neurons may constitute a governing mechanism of information processing when encoding external covariates. Specifically, we show that conditional independence between neuronal outputs may not provide an optimal encoding strategy when the firing probability of a neuron depends on the history of firing of other neurons connected to it. Rather, cooperation among neurons can provide a ¿message-passing¿ mechanism that preserves most of the information in the covariates under specific constraints governing their connectivity structure. Using a biologically plausible statistical learning model, we demonstrate the performance of the proposed approach in synergistically encoding a motor task using a subset of neurons drawn randomly from a large population. We demonstrate its superiority in approximating the joint density of the population from limited data compared to a statistically independent model and a pairwise maximum entropy (MaxEnt) model.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 2 )