By Topic

Anthropic Correction of Information Estimates and Its Application to Neural Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gastpar, M.C. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Gill, P.R. ; Huth, A.G. ; Theunissen, F.E.

Information theory has been used as an organizing principle in neuroscience for several decades. Estimates of the mutual information (MI) between signals acquired in neurophysiological experiments are believed to yield insights into the structure of the underlying information processing architectures. With the pervasive availability of recordings from many neurons, several information and redundancy measures have been proposed in the recent literature. A typical scenario is that only a small number of stimuli can be tested, while ample response data may be available for each of the tested stimuli. The resulting asymmetric information estimation problem is considered. It is shown that the direct plug-in information estimate has a negative bias. An anthropic correction is introduced that has a positive bias. These two complementary estimators and their combinations are natural candidates for information estimation in neuroscience. Tail and variance bounds are given for both estimates. The proposed information estimates are applied to the analysis of neural discrimination and redundancy in the avian auditory system.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 2 )