By Topic

Joint Base-Calling of Two DNA Sequences With Factor Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaomeng Shi ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Lun, D.S. ; Medard, M. ; Kotter, R.
more authors

Automated estimation of DNA base-sequences is an important step in genomics and in many other emerging fields in biological and medical sciences. Current automated sequencers process single strands only. To improve the utility of existing technologies, we propose to mix two independent strands prior to electrophoresis, and base-call jointly by applying the sum-product algorithm on factor graphs. We first present a statistical model for DNA sequencing data and examine the model parameters. A practical heuristic is then proposed to estimate the peaks, which are then separated into two source sequences (Major/Minor) by passing messages on a factor graph. Simulation results show that joint base-calling can provide less accurate but valid results for the minor. The algorithm presented provides a basis for future investigation of joint sequencing techniques.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 2 )