By Topic

Using compiled knowledge to guide and focus abductive diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Console, L. ; Dipartimento di Inf., Torino Univ., Italy ; Portinale, L. ; Dupre, D.T.

Several artificial intelligence architectures and systems based on “deep” models of a domain have been proposed, in particular for the diagnostic task. These systems have several advantages over traditional knowledge based systems, but they have a main limitation in their computational complexity. One of the ways to face this problem is to rely on a knowledge compilation phase, which produces knowledge that can be used more effectively with respect to the original one. We show how a specific knowledge compilation approach can focus reasoning in abductive diagnosis, and, in particular, can improve the performances of AID, an abductive diagnosis system. The approach aims at focusing the overall diagnostic cycle in two interdependent ways: avoiding the generation of candidate solutions to be discarded a posteriori and integrating the generation of candidate solutions with discrimination among different candidates. Knowledge compilation is used off-line to produce operational (i.e., easily evaluated) conditions that embed the abductive reasoning strategy and are used in addition to the original model, with the goal of ruling out parts of the search space or focusing on parts of it. The conditions are useful to solve most cases using less time for computing the same solutions, yet preserving all the power of the model-based system for dealing with multiple faults and explaining the solutions. Experimental results showing the advantages of the approach are presented

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:8 ,  Issue: 5 )