By Topic

A Survey of Artificial Intelligence for Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
He, A. ; Bradley Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Kyung Kyoon Bae ; Newman, T.R. ; Gaeddert, J.
more authors

Cognitive radio (CR) is an enabling technology for numerous new capabilities such as dynamic spectrum access, spectrum markets, and self-organizing networks. To realize this diverse set of applications, CR researchers leverage a variety of artificial intelligence (AI) techniques. To help researchers better understand the practical implications of AI to their CR designs, this paper reviews several CR implementations that used the following AI techniques: artificial neural networks (ANNs), metaheuristic algorithms, hidden Markov models (HMMs), rule-based systems, ontology-based systems (OBSs), and case-based systems (CBSs). Factors that influence the choice of AI techniques, such as responsiveness, complexity, security, robustness, and stability, are discussed. To provide readers with a more concrete understanding, these factors are illustrated in an extended discussion of two CR designs.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:59 ,  Issue: 4 )