By Topic

Multilevel Power Optimization of Pipelined A/D Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jintae Kim ; Electr. Eng. Dept., Univ. of California, Los Angeles, CA, USA ; Limotyrakis, S. ; Yang, C.-K.K.

Power dissipation of analog and mixed-signal circuits has emerged as a critical design constraint in today's VLSI systems. This paper presents a multilevel design optimization approach for reducing the power dissipation of a pipelined analog-to-digital converter (ADC). At the circuit-level, device-types and supply-voltages are jointly optimized for the residue amplifier of a pipeline stage to minimize power. At the architecture-level, the nonlinearity contribution from stage gain error is optimally distributed to further minimize combined power dissipation. The optimizations take advantage of an analytical optimization method based on geometric programming for a quantitative tradeoff analysis. All of the proposed power optimizations are applied to the design of a two-way interleaved 8-bit 320 MS/s pipelined ADC in 90-nm CMOS technology. Measured performance from a prototype chip shows 7.30-bit of ENOB at Nyquist input frequency with DNL of -0.35/+0.45 LSB and INL of -0.72/+0.89 LSB, while dissipating 12.77 mW from 2.1 V/1.2 V supplies. The achieved conversion efficiency is 253fJ/conv-step.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 5 )